Anomalous Couplings at the TeVatron

Beate Heinemann, University of Liverpool David Waters, University College London

- Introduction
- First Run 2 Results on Di-Boson Production
- Run 2 sensitivity
- Radiation Amplitude Zero
- Conclusions and Questions

The Tevatron: Run 2

CDF

UK institutes:

Glasgow, Liverpool, Oxford, UCL

UK institutes:

D₀

Imperial, Lancaster, Manchester

 $p-\bar{p}$ collisions at sqrt(s) ≈ 2.0 TeV

bunch crossing rate 396 ns

Bristol, 26/11/2003

CDF Run 2 Luminosity

Physics Analyses use about 130 pb⁻¹ recorded up to June 2003 (about 70 pb⁻¹ good quality data on tape up to current shutdown) Expect 2 /fb by 2006 and 4.4-8.6 /fb by 2009

Di-Boson Production: Run I

Diboson cross sections from CDF (preliminary)

Di-Bosons: W/Z + Photon

- Construct effective
 Lagrangian: introduce
 "anomalous couplings" _ and
 _ (vanish in SM)
- Cross section rises with s, i.e. violates unitarity \rightarrow introduce form factor Λ : $\underline{(s)} = \Delta \kappa / [1 + (s/\Lambda^2)]^n$
- Z+_ don't couple to another in SM (diagram C non existent)
- Non-SM couplings cause harder photon Et spectrum

Di-Bosons: WW and WZ

- WW production:
 - sensitive to WW_ and WWZ vertex
 - cross section: σ =13.25 pb
- WZ production:
 - sensitive to WWZ vertex
 - cross section: σ =2.5 pb
- Harder W Pt spectrum
- Experimentally two channels:
 - WW->lvlv: lepton Pt spectrum sensitive to TGC's
 - WW/WZ->lvjj: jet Et spectrum

Beate Heinemar

W+ Photon: first Run 2 Results

- Event selection
 - lepton Et and Met >25 (20) in electron (muon) channel
 - Photon Et>7 GeV, _R(I_)>0.7
- Largest uncertainty: BG from jets fragmenting into "single hard pi0" 30 +-10%

	Events
Signal MC	98.9±5.6
Jet->_	28.1±9.4
Other BG	13.7±0.7
SM exp.	140.7±11.0(sys)±6.8(lumi)
Data	133

 $\sigma = 17.2 \pm 2.2 \text{(stat.)} \pm 2.0 \text{(sys)} \pm 1.1 \text{(lumi) pb}$

(SM: $\sigma = 18.6 \pm 1.3 \text{ pb}$)

Z+ Photon: first Run 2 Results

- Event selection
 - 2 leptons Et>25 (20) in electron (muon) channel
 - Photon Et>7 GeV , _R(I_)>0.7
- BG from jets fragmenting into "single hard pi0" 5%

	Events
Signal MC	40.5±2.3
Jet->_	2.5±0.8
Other BG	0.2+0.3-0.2
SM exp.	43.2±2.3(sys)±2.4(lumi)
Data	47

$$\sigma = 5.8 \pm 0.8 \text{(stat.)} \pm 0.3 \text{(sys)} \pm 0.4 \text{(lumi) pb}$$

(SM: $\sigma = 5.3 \pm 0.4$) pb

WW-Production in Run 2

- both W's decay leptonically
- Large backgrounds from tt->WWbb-> II+bb+E/t
- Suppressed by demanding no jets with Et>10 GeV
 - Large theoretical uncertainties (LO MC)

	Events
Signal WW MC	6.9±1.5
Drell-Yan	1.4±0.3
Other BG	0.9+0.2
SM exp.	9.2±1.6
Data	5

 σ =5.1 +5.4-3.6±1.3 (sys)±0.3(lumi) pb

NLO: 13.25 ± 0.25 pb (J.M.Campbell, R.K.Ellis hep-ph/9905386)

Sensitivity to TGC's with 2 fb-1

	Δκ	\lambda
W +γ	<0.4	<0.12
WW,WZ_1_jj	<0.24	<0.16
WZ_trileptons	<0.3	<0.2
combined	<0.16	<0.09

	$ h_{30}(\gamma,Z) $	$ h_{40}(\gamma,Z) $
Ζγ_1 ⁺ 1 ⁻ _	<0.1	<0.006
Ζγ	<0.04	<0.003

 Λ_{FF} =2 TeV

- Extrapolated from run 1 analyses
- · Considered only CP conserving couplings
- Improved detector and analyses techniques should improve sensitivity
- First run 2 publications in 2004
- Main BG to Z->vv γ channel are cosmics: new timing in EM calorimeter in CDF will help

Radiation Amplitude Zero

 At LO: exact cancellation of t- and u-channel with s-channel:

Beate Heine

- _(W $^{\pm}$ _) suppressed for cos_*=(Q_i+Q_j)/Q_W= \pm 1/3
- "Destroyed" by
 - NLO QCD corrections
 - detector resolution
 - not able to reconstruct cos_*

 Observable in angular separation photon: Q(I)*(_ -_lepton)

Anomalous couplings fill in RAZ

11

Bristol, 26/11/2003

TGC and QGC MC generators

- Anomalous Triple Gauge Coulings:
 - WGAMMA and ZGAMMA by U. Baur:
 - Can modify TGC's
 - SM cross section checked against CompHep and MadGraph
 - MCFM and BHO for WW, WZ and ZZ
- Anomalous Quartic Gauge Couplings:
 - CompHep and MadGraph and WGAMMAGAMMA give SM expectation but cannot modify QGC's
 - No measurements so far but experimental analysis of 3-boson final states rather trivial extension od di-boson analysis→ can measure cross section (or upper limit) now for:
 - WW_Y, ZZ_Y, WZ_Y
 - Wyy, Zyy: "measurable" cross section for W_ (Z_) about 4 (2) fb (including e and _ channel, both charges, Pt(_)>10 GeV, _R(l_)>0.7), _R(__)>0.3 (hep-ph/9702364: U. Baur et al.) \rightarrow 0.8 W_ events now, 8 events with 2 fb⁻¹ by 2006

Conclusions

- Tevatron run 2 in progress: expect
 - 2 /fb by 2006
 - 4-8 /fb by 2009
- Have measured W_{γ} , Z_{γ} and WW production cross sections
- Unique possibility to observe RAZ
- UK strongly involved in CDF di-boson analyses
- Will extract and publish TGC's next year
- Can measure tri-boson production cross sections

Questions/Issues

- Is there a QGC MC for pp collisions?
- How shall we treat CP violating couplings?
- Higher sensitivity using multi-dimensional likelihood? E.g. in Wγ: which variable has sensitivity and is uncorrelated with photon Et?
- Is sensitivity different for WW γ and W $\gamma\gamma$, ZZ γ and Z $\gamma\gamma$? What about WZ γ ?
- How interesting is RAZ?
- Form Factor dependence?
- How should we present our results such that they are most useful for theorists/other experiments?